博客
关于我
计算几何小结:叉积
阅读量:261 次
发布时间:2019-03-01

本文共 453 字,大约阅读时间需要 1 分钟。

一个神奇的东西,可以判断两线段是否相交,三点共线,多边形角形面积……

code:

double multi(point p1,point p2,point p0){    double x1=p1.x-p0.x,x2=p2.x-p0.x;    double y1=p1.y-p0.y,y2=p2.y-p0.y;    return x1*y2-x2*y1;}
第一次看到简直一脸懵逼,什么鬼?

首先我们考虑p0是原点的情况。

当x1=x2时如果p1要顺时针旋转到p2,则他们的叉积小于0,否则大于0。

如果x1,x2变化,也容易证明,叉积依然小于0.

在其他象限也有这样的规律。

所以叉积的正负分别代表p1逆/顺时针得到p2

关于第三个参数p0,我感性的理解为以他为旋转中心。

那么问题来了,假如p1,p2,p0三点共线,那叉积是多少。

简单的猜想:0

why

我认为可以从叉积的几何意义理解。

 叉积的绝对值除二就是那三个点组成的三角形的面积!

可以将图画出来,用割补法求,最后化简出来就是叉积的式子了。

你可能感兴趣的文章
Node.js初体验
查看>>
Node.js升级工具n
查看>>
Node.js卸载超详细步骤(附图文讲解)
查看>>
Node.js卸载超详细步骤(附图文讲解)
查看>>
Node.js基于Express框架搭建一个简单的注册登录Web功能
查看>>
node.js学习之npm 入门 —8.《怎样创建,发布,升级你的npm,node模块》
查看>>
Node.js安装与配置指南:轻松启航您的JavaScript服务器之旅
查看>>
Node.js安装及环境配置之Windows篇
查看>>
Node.js安装和入门 - 2行代码让你能够启动一个Server
查看>>
node.js安装方法
查看>>
Node.js官网无法正常访问时安装NodeJS的方法
查看>>
node.js模块、包
查看>>
node.js模拟qq漂流瓶
查看>>
node.js的express框架用法(一)
查看>>
Node.js的交互式解释器(REPL)
查看>>
Node.js的循环与异步问题
查看>>
Node.js高级编程:用Javascript构建可伸缩应用(1)1.1 介绍和安装-安装Node
查看>>
nodejs + socket.io 同时使用http 和 https
查看>>
NodeJS @kubernetes/client-node连接到kubernetes集群的方法
查看>>
NodeJS API简介
查看>>