博客
关于我
计算几何小结:叉积
阅读量:261 次
发布时间:2019-03-01

本文共 453 字,大约阅读时间需要 1 分钟。

一个神奇的东西,可以判断两线段是否相交,三点共线,多边形角形面积……

code:

double multi(point p1,point p2,point p0){    double x1=p1.x-p0.x,x2=p2.x-p0.x;    double y1=p1.y-p0.y,y2=p2.y-p0.y;    return x1*y2-x2*y1;}
第一次看到简直一脸懵逼,什么鬼?

首先我们考虑p0是原点的情况。

当x1=x2时如果p1要顺时针旋转到p2,则他们的叉积小于0,否则大于0。

如果x1,x2变化,也容易证明,叉积依然小于0.

在其他象限也有这样的规律。

所以叉积的正负分别代表p1逆/顺时针得到p2

关于第三个参数p0,我感性的理解为以他为旋转中心。

那么问题来了,假如p1,p2,p0三点共线,那叉积是多少。

简单的猜想:0

why

我认为可以从叉积的几何意义理解。

 叉积的绝对值除二就是那三个点组成的三角形的面积!

可以将图画出来,用割补法求,最后化简出来就是叉积的式子了。

你可能感兴趣的文章
Nacos使用Ribbon
查看>>
Nacos做注册中心使用
查看>>
Nacos做配置中心使用
查看>>
Nacos入门过程的坑--获取不到配置的值
查看>>
Nacos原理
查看>>
Nacos发布0.5.0版本,轻松玩转动态 DNS 服务
查看>>
Nacos启动异常
查看>>
Nacos命名空间配置_每个人用各自自己的命名空间---SpringCloud Alibaba_若依微服务框架改造---工作笔记001
查看>>
Nacos和Zookeeper对比
查看>>
Nacos在双击startup.cmd启动时提示:Unable to start embedded Tomcat
查看>>
Nacos基础版 从入门到精通
查看>>
Nacos如何实现Raft算法与Raft协议原理详解
查看>>
Nacos安装教程(非常详细)从零基础入门到精通,看完这一篇就够了
查看>>
Nacos实战攻略:从入门到精通,全面掌握服务治理与配置管理!(上)
查看>>
Nacos实战攻略:从入门到精通,全面掌握服务治理与配置管理!(下)
查看>>
Nacos心跳机制实现快速上下线
查看>>
nacos报错com.alibaba.nacos.shaded.io.grpc.StatusRuntimeException: UNAVAILABLE: io exception
查看>>
Nacos服务注册与发现demo
查看>>
Nacos服务注册与发现的2种实现方法!
查看>>
nacos服务注册和发现原理简单实现案例
查看>>